The Role of the Bifactor Model in Resolving Dimensionality Issues in Health Outcomes Measures

Published in: Quality of Life Research, v. 16, suppl. 1, Aug. 2007, p. 19-31

Posted on RAND.org on January 01, 2007

by Steven Reise, Julien Morizot, Ron D. Hays

Read More

Access further information on this document at www.springerlink.com

This article was published outside of RAND. The full text of the article can be found at the link above.

OBJECTIVES: The authors propose the application of a bifactor model for exploring the dimensional structure of an item response matrix, and for handling multidimensionality. BACKGROUND: The authors argue that a bifactor analysis can complement traditional dimensionality investigations by: (a) providing an evaluation of the distortion that may occur when unidimensional models are fit to multidimensional data, (b) allowing researchers to examine the utility of forming subscales, and, (c) providing an alternative to non-hierarchical multidimensional models for scaling individual differences. METHODS:To demonstrate our arguments, the authors use responses (N = 1,000 Medicaid recipients) to 16 items in the Consumer Assessment of Healthcare Providers and Systems (CAHPS 2.0) survey. ANALYSES: Exploratory and confirmatory factor analytic and item response theory models (unidimensional, multidimensional, and bifactor) were estimated. RESULTS: CAHPS items are consistent with both unidimensional and multidimensional solutions. However, the bifactor model revealed that the overwhelming majority of common variance was due to a general factor. After controlling for the general factor, subscales provided little measurement precision. CONCLUSION: The bifactor model provides a valuable tool for exploring dimensionality related questions. In the Discussion, the authors describe contexts where a bifactor analysis is most productively used, and we contrast bifactor with multidimensional IRT models (MIRT). We also describe implications of bifactor models for IRT applications, and raise some limitations.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.