A Spatiotemporal Quantile Regression Model for Emergency Department Expenditures

Published in: Statistics in Medicine, v. 34, no. 17, July 2015, p. 2559-2575

Posted on RAND.org on March 24, 2015

by Brian Neelon, Fan Li, Lane F. Burgette, Sara E. Benjamin

Read More

Access further information on this document at Statistics in Medicine

This article was published outside of RAND. The full text of the article can be found at the link above.

Motivated by a recent study of geographic and temporal trends in emergency department care, we develop a spatiotemporal quantile regression model for the analysis of emergency department-related medical expenditures. The model yields distinct spatial patterns across time for each quantile of the response distribution, which is important in the spatial analysis of expenditures, as there is often little spatiotemporal variation in mean expenditures but more pronounced variation in the extremes. The model has a hierarchical structure incorporating patient-level and region-level predictors as well as spatiotemporal random effects. We model the random effects via intrinsic conditionally autoregressive priors, improving small-area estimation through maximum spatiotemporal smoothing. We adopt a Bayesian modeling approach based on an asymmetric Laplace distribution and develop an efficient posterior sampling scheme that relies solely on conjugate full conditionals. We apply our model to data from the Duke support repository, a large georeferenced database containing health and financial data for Duke Health System patients residing in Durham County, North Carolina.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit www.rand.org/about/principles.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.