Neutron branching processes.

by T. W. Mullikin

Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback33 pages $15.00 $12.00 20% Web Discount

A study of the neutron population in a nuclear reactor as a branching process. New results are presented on the extinction probability of a supercritical reactor near the critical dimension, extending results of T. E. Harris. In this special context, parts of the theory of branching processes are given. The results apply to spheres, to infinite slabs, and to rods, with the assumptions that the neutron energy is constant and that the collision- fission process is isotropic. Homogeneity is also assumed, although similar results can be obtained in nonhomogeneous cases of restricted types. Thus, a new computational method is determined for estimating the critical dimension and the steady-state flux for the reactors considered. This replaces the eigenvalue problem of transport theory by a nonlinear functional equation that can be solved by iteration.

This report is part of the RAND Corporation Paper series. The paper was a product of the RAND Corporation from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.