Download
Download eBook for Free
Format | File Size | Notes |
---|---|---|
PDF file | 1.1 MB | Use Adobe Acrobat Reader version 10 or higher for the best experience. |
Purchase
Purchase Print Copy
Format | List Price | Price | |
---|---|---|---|
Add to Cart | Paperback38 pages | $20.00 | $16.00 20% Web Discount |
In game theory, a convex game is one in which the incentives for joining a coalition increase as the coalition grows. This paper shows that the core of such a game -- the set of outcomes that cannot be improved on by any coalition of players -- is quite large and has an especially regular structure. Certain other cooperative solution concepts are also shown to be related to the core in simple ways: (1) The value of a convex game is the center of gravity of the extreme points of the core, and (2) the von Neumann-Morgenstern stable set solution of a convex game is unique and coincides with the core. Similar results for the kernel and the bargaining set will be presented in a later paper. Here, it is also shown that convex games are not necessarily the sum of any number of convex measure games.
This report is part of the RAND Corporation Paper series. The paper was a product of the RAND Corporation from 1948 to 2003 that captured speeches, memorials, and derivative research, usually prepared on authors' own time and meant to be the scholarly or scientific contribution of individual authors to their professional fields. Papers were less formal than reports and did not require rigorous peer review.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.