Cover: When Race/Ethnicity Data Are Lacking

When Race/Ethnicity Data Are Lacking

Using Advanced Indirect Estimation Methods to Measure Disparities

Published Mar 28, 2016

by Allen Fremont, Joel S. Weissman, Emily Hoch, Marc N. Elliott

Download Free Electronic Document

FormatFile SizeNotes
PDF file 0.1 MB

Use Adobe Acrobat Reader version 10 or higher for the best experience.

A key aim of U.S. health care reforms is to ensure equitable care while improving quality for all Americans. Limited race/ethnicity data in health care records hamper efforts to meet this goal. Despite improvements in access and quality, gaps persist, particularly among persons belonging to racial/ethnic minority and low-income groups. This report describes the use of indirect estimation methods to produce probabilistic estimates of racial/ethnic populations to monitor health care utilization and improvement. One method described, called Bayesian Indirect Surname Geocoding, uses a person's Census surname and the racial/ethnic composition of their neighborhood to produce a set of probabilities that a given person belongs to one of a set of mutually exclusive racial/ethnic groups. Advances in methods for estimating race/ethnicity are enabling health plans and other health care organizations to overcome a long-standing barrier to routine monitoring and actions to reduce disparities in care. Though these new estimation methods are promising, practical knowledge and guidance on how to most effectively apply newly available race/ethnicity data to address disparities can be greatly extended.

This research was conducted by RAND Health.

This report is part of the RAND research report series. RAND reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND reports undergo rigorous peer review to ensure high standards for research quality and objectivity.

This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit

RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.