Pattern-Mixture Models for Addressing Nonignorable Nonresponse in Longitudinal Substance Abuse Treatment Studies

by Susan M. Paddock, Maria Orlando Edelen, Suzanne L. Wenzel, Patricia A. Ebener, Wallace Mandell

Download eBook for Free

FormatFile SizeNotes
PDF file 0.1 MB

Use Adobe Acrobat Reader version 10 or higher for the best experience.

Missing data is a pervasive problem in longitudinal treatment research studies. Missing data due to study non-completion complicate the task of drawing conclusions about the effect of a treatment or policy on a measure of interest (e.g., a process measure or outcome). Biased estimates of change over time in a measure could result if attrition is related to the constructs that are being measured. Identifying potential biases in estimates is critical for research involving longitudinal assessments. The pattern-mixture model (PMM) provides a way to understand and account for attrition when analyzing data and communicating results to research stakeholders. This paper demonstrates the use of PMMs in a study of the quality of care in therapeutic communities (TCs) using the Dimensions of Change Instrument (DCI) to measure longitudinal client-level change and TC treatment process. The effect of choice of missing data pattern and its effects on conclusions drawn from analyses is highlighted along with the role of clinical expertise in formulating PMMs.

The research described in this report was performed under the auspices of RAND Health.

This report is part of the RAND Corporation working paper series. RAND working papers are intended to share researchers' latest findings and to solicit informal peer review. They have been approved for circulation by RAND but may not have been formally edited or peer reviewed.

Permission is given to duplicate this electronic document for personal use only, as long as it is unaltered and complete. Copies may not be duplicated for commercial purposes. Unauthorized posting of RAND PDFs to a non-RAND Web site is prohibited. RAND PDFs are protected under copyright law. For information on reprint and linking permissions, please visit the RAND Permissions page.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.