Cover: Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models

Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models

Published in: Medical Decision Making (2024). DOI: 10.1177/0272989X241255618

Posted on rand.org Jun 17, 2024

by Carlos Pineda-Antunez, Claudia Seguin, Luuk A. van Duuren, Amy B. Knudsen, Barak Davidi, Pedro Nascimento de Lima, Carolyn M. Rutter, Karen M. Kuntz, Iris Lansdorp-Vogelaar, Nicholson Collier, et al.

Purpose

To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET)'s SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.

Methods

We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANNs) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.

Results

The optimal ANN for SimCRC had 4 hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had 1 hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 h for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.

Conclusions

Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, such as the CISNET CRC models. In this work, we present a step-by-step guide to constructing emulators for calibrating 3 realistic CRC individual-level models using a Bayesian approach.

Research conducted by

This report is part of the RAND external publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.