Resonance Analysis
A Methodology for Detecting Author Affiliations through Distinctive Patterns of Word Choice
Download eBook for Free
Format | File Size | Notes |
---|---|---|
PDF file | 2 MB | Use Adobe Acrobat Reader version 10 or higher for the best experience. |
Resonance analysis is an evolving text mining method for estimating how much affinity exists in a broader population for a specific group. The method involves a multistage procedure for scoring words according to how distinctive they are of authors in the specific group, and then scoring a broader population according to whether they make similar distinctive choices. While likely applicable to many different forms of written content, resonance analysis was developed for short-form social media posts and has been tested primarily on Twitter and Twitter-like data.
In this working paper, we describe resonance analysis and provide detailed guidance for using it effectively. We then conduct an empirical test of real-world Twitter data to demonstrate and validate the method using tweets from Republican Party members, Democratic Party members, and members of the news media. The results show that the method is able to distinguish Republicans' tweets from Democrats' tweets with 92-percent accuracy. We then demonstrate and validate the method using simulated artificial language to create controlled experimental conditions. The method is very accurate when minimum data requirements have been met. In an operational field test, resonance analysis generated results that mirror real-world conditions and achieved statistically significant agreement with double-blind human analyst judgments of the same users. Finally, we provide examples of resonance analysis usage with social media data and identify opportunities for future research.
Table of Contents
Chapter One
Context and Conceptual Framework
Chapter Two
Methodology
Chapter Three
Empirical Validation Test Results
Chapter Four
Simulation-Based Validation Test Results
Chapter Five
Resonance Analysis in Practice: Closing Thoughts
Research conducted by
This research was prepared for the Pardee RAND Graduate School and conducted within the RAND Center for Network Analysis and System Science.
This report is part of the RAND Corporation Working paper series. RAND working papers are intended to share researchers' latest findings and to solicit informal peer review. They have been approved for circulation by RAND but may not have been formally edited or peer reviewed.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.