Download eBook for Free

FormatFile SizeNotes
PDF file 0.6 MB

Use Adobe Acrobat Reader version 10 or higher for the best experience.

The increasing availability of longitudinal student achievement data has heightened interest among researchers, educators, and policymakers in using these data to evaluate educational inputs, as well as for school and possibly teacher accountability. Researchers have developed elaborate "value-added models" of these longitudinal data to estimate the effects of educational inputs (e.g., teachers and schools) on student achievement while using prior achievement to adjust for nonrandom assignment of students to schools and classes. A challenge to such modeling efforts is the extensive numbers of students with incomplete records and the tendency for those students to be lower-achieving. These conditions create the potential for results to be sensitive to violations of the assumption that data are missing at random, an assumption that is commonly used when estimating model parameters. The current study extends recent value-added modeling approaches for longitudinal student achievement data developed by Lockwood et al. to allow data to be missing not at random via random effects selection and pattern mixture models, and we apply these methods to data from a large urban school district to estimate effects of elementary school mathematics teachers. We find that allowing the data to be missing not at random has little impact on estimated teacher effects. The robustness of estimated teacher effects to the missing data assumption appears to result from both the relatively small impact of model specification on estimated student effects compared with the large variability in teacher effects and the downweighting of scores from students with incomplete data.

Posted here with permission from The Annals of Applied Statistics, 2011, Vol. 5, No. 2A, pp. 773-797. Copyright © 2011 Institute of Mathematical Statistics.

Originally published in The Annals of Applied Statistics, 2011, Vol. 5, No. 2A, pp. 773-797.

This report is part of the RAND Corporation Reprint series. The Reprint was a product of the RAND Corporation from 1992 to 2011 that represented previously published journal articles, book chapters, and reports with the permission of the publisher. RAND reprints were formally reviewed in accordance with the publisher's editorial policy and compliant with RAND's rigorous quality assurance standards for quality and objectivity. For select current RAND journal articles, see External Publications.

This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.