Download Free Electronic Document

FormatFile SizeNotes
PDF file 0.2 MB

Use Adobe Acrobat Reader version 10 or higher for the best experience.

Inverse probability weighted estimates are widely used in applications where data are missing due to nonresponse or censoring and in the estimation of causal effects from observational studies. The current estimators rely on ignorability assumptions for response indicators or treatment assignment, and outcomes, conditional on observed covariates which are assumed to be measured without error. However, measurement error is common in variables collected for many applications. For example, in studies of educational interventions, student achievement as measured by standardized tests is almost always used as the key covariate for removing hidden biases but standardized test scores often have substantial measurement errors for many students. The authors provide several expressions for a weighting function that can yield a consistent estimator for population means using incomplete data and covariates measured with error.

The research described in this report was conducted by RAND Education.

This report is part of the RAND Corporation Working paper series. RAND working papers are intended to share researchers' latest findings and to solicit informal peer review. They have been approved for circulation by RAND but may not have been formally edited or peer reviewed.

This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.