Modeling Agent Behaviors for Policy Analysis Via Reinforcement Learning

Published in: 2020 19th IEEE International Conference on Machine Learning and Applications (2021). doi: 10.1109/ICMLA51294.2020.00043

Posted on on March 09, 2021

by Osonde A. Osoba, Raffaele Vardavas, Justin Grana, Rushil Zutshi, Amber Jaycocks

Read More

Access further information on this document at IEEE

This article was published outside of RAND. The full text of the article can be found at the link above.

Agent-based Models (ABMs) are valuable tools for policy analysis. ABMs help analysts explore the emergent consequences of regulatory and policy interventions in multi-agent decision-making settings. But the validity of inferences drawn from ABM explorations depends on the quality of the ABM agents' behavioral models. Prior approaches for specifying behaviors have limitations. This paper examines the value of reinforcement learning (RL) models as adaptive, high-performing, and behaviorally-valid models of agent decision-making in ABMs. We discuss the value of RL for modeling agents' utility-maximizing behaviors in policy-relevant ABMs. We address the problem of adapting RL algorithms to handle multi-agency in games by adapting and extending methods from recent literature. We evaluate examples of such RL-based ABM agents via experiments on two policy-relevant ABMs: a Minority Game ABM, and an ABM of Influenza Transmission. The RL behavioral models can outperform the default adaptive behavioral models. We also run analytic experiments on our RL-equipped ABMs: explorations of the effects of dynamic behavioral heterogeneity in a population, the impact of social network factors on adaptability, and the emergence of synchronization in a community. Our results suggest that the RL formalism can be an efficient abstraction for behavioral models in ABMs.

This report is part of the RAND Corporation External publication series. Many RAND studies are published in peer-reviewed scholarly journals, as chapters in commercial books, or as documents published by other organizations.

Our mission to help improve policy and decisionmaking through research and analysis is enabled through our core values of quality and objectivity and our unwavering commitment to the highest level of integrity and ethical behavior. To help ensure our research and analysis are rigorous, objective, and nonpartisan, we subject our research publications to a robust and exacting quality-assurance process; avoid both the appearance and reality of financial and other conflicts of interest through staff training, project screening, and a policy of mandatory disclosure; and pursue transparency in our research engagements through our commitment to the open publication of our research findings and recommendations, disclosure of the source of funding of published research, and policies to ensure intellectual independence. For more information, visit

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.