Modeling and Forecasting the Demand for Aircraft Recoverable Spare Parts

by John L. Adams, John Abell, Karen E. Isaacson


Full Document

FormatFile SizeNotes
PDF file 5.2 MB

Use Adobe Acrobat Reader version 10 or higher for the best experience.


Purchase Print Copy

 FormatList Price Price
Add to Cart Paperback129 pages $30.00 $24.00 20% Web Discount

This report explores issues in forecasting and modeling the demand for aircraft recoverable spare parts to improve the Air Force's estimation of spares and repair requirements over quarterly, annual, and longer planning horizons. Specifically, it demonstrates the utility of approaches that account explicitly for nonstationarity and their superiority over current methods used by the Air Force Materiel Command for these purposes. The authors recommend using a weighted regression, a special case of the Kalman filter, for forecasting demand for high-demand items. This approach is a logical extension of Bayesian statistics, which explicitly accounts for nonstationarity in stochastic processes, assigning greater weight to more recent than to less recent demands. Coupled with an improved approach to variance estimation that assigns greater uncertainty to longer planning horizons than to shorter ones, this holds the promise of reducing the cost of spares investments while achieving adequate levels of system performance.

This report is part of the RAND Corporation Report series. The report was a product of the RAND Corporation from 1948 to 1993 that represented the principal publication documenting and transmitting RAND's major research findings and final research.

Permission is given to duplicate this electronic document for personal use only, as long as it is unaltered and complete. Copies may not be duplicated for commercial purposes. Unauthorized posting of RAND PDFs to a non-RAND Web site is prohibited. RAND PDFs are protected under copyright law. For information on reprint and linking permissions, please visit the RAND Permissions page.

The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.