Visualization
Rage Against the Machine?
Oct 11, 2023
The authors explore the relationship between occupational exposure and technologies, wages, and employment related to artificial intelligence (AI). Using natural language processing (NLP), the authors evaluate occupational exposure to all technology patents in the United States, as well as to specific AI technologies, including machine learning, NLP, speech recognition, planning control, AI hardware, computer vision, and evolutionary computation.
A Data-Driven Approach to Identifying Exposed Occupations
Format | File Size | Notes |
---|---|---|
PDF file | 2.3 MB | Use Adobe Acrobat Reader version 10 or higher for the best experience. |
The rapid development of artificial intelligence (AI) has the potential to revolutionize the labor force with new generative AI tools that are projected to contribute trillions of dollars to the global economy by 2040. However, this opportunity comes with concerns about the impact of AI on workers and labor markets. As AI technology continues to evolve, there is a growing need for research to understand the technology's implications for workers, firms, and markets. This report addresses this pressing need by exploring the relationship between occupational exposure and AI-related technologies, wages, and employment.
Using natural language processing (NLP) to identify semantic similarities between job task descriptions and U.S. technology patents awarded between 1976 and 2020, the authors evaluate occupational exposure to all technology patents in the United States, as well as to specific AI technologies, including machine learning, NLP, speech recognition, planning control, AI hardware, computer vision, and evolutionary computation.
The authors' findings suggest that exposure to both general technology and AI technology patents is not uniform across occupational groups, over time, or across technology categories. They estimate that up to 15 percent of U.S. workers were highly exposed to AI technology patents by 2019 and find that the correlation between technology exposure and employment growth can depend on the routineness of the occupation. This report contributes to the growing literature on the labor market implications of AI and provides insights that can inform policy discussions around this emerging issue.
Funding for this research was provided by gifts from RAND supporters and income from operations. The research was conducted by RAND Education and Labor.
This report is part of the RAND Corporation Research report series. RAND reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND reports undergo rigorous peer review to ensure high standards for research quality and objectivity.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
The RAND Corporation is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.