Universal Command and Control Language Early System Engineering
Performance Effects of a Universal Command and Control Standard
ResearchPublished Feb 21, 2023
The U.S. Department of Defense (DoD) requires more efficient and timely methods to acquire, integrate, and interoperate systems and systems-of-systems (SoSs) to deter near-peer adversaries and prevail in combat. RAND researchers were asked to participate in a multiyear effort to help DoD understand the challenges of creating a universal command and control language to facilitate the evolution of systems and interoperability of SoSs.
Performance Effects of a Universal Command and Control Standard
ResearchPublished Feb 21, 2023
The U.S. Department of Defense (DoD) requires more efficient and timely methods to acquire, integrate, and interoperate systems, and perhaps more crucially systems-of-systems (SoSs), to deter near-peer adversaries in a rapidly evolving threat environment and prevail in combat should deterrence fail. Current practice for integration across systems generally relies on the development of interface control documents that describe in detail how the different systems and subsystems connect and interact.
In 2019, RAND researchers were asked to participate in a multiyear effort to help DoD understand the challenges of creating a universal command and control language (UCCL) to facilitate the evolution of systems and interoperability of SoSs. In this report, the authors establish a conceptual framework for analyzing SoS performance of different sensor-to-shooter connections, combinations, and associated command and control constructs. The analysis shows that implementation details of a standard interface may contribute to interface overhead that changes technical performance by orders of magnitude.
Overall, while the authors found that there are cases in which mission performance is mainly driven by operational parameters and not the interface design, there are also cases in which implementing a standard interface has the potential to adversely influence mission outcomes if designers do not apply in-depth engineering analysis and careful design practice. This research should not be viewed as a study of a specific standard interface, but as an early system engineering study of how such an interface could and should be designed.
This research was sponsored by the Office of the Secretary Defense and conducted within the Acquisition and Technology Policy Center of the RAND National Security Research Division (NSRD).
This publication is part of the RAND research report series. Research reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND research reports undergo rigorous peer review to ensure high standards for research quality and objectivity.
This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited; linking directly to this product page is encouraged. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial purposes. For information on reprint and reuse permissions, please visit www.rand.org/pubs/permissions.
RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND's publications do not necessarily reflect the opinions of its research clients and sponsors.